CIRSSE-R =~ 77

NASA-CR-192734 NAGW-1333
by, Ny
s 00 O
/5= 7E
~
p/ Oif(/
v v ™~ bl bl ™ .-.- T T
- T T T T T

TECRRICAL BIP2RTS

Center for Intelligent
Robotic Systems
for Space Exploration

[

Rensselaer Polytechnic Institute

Troy, New York 12180-3590 .. ENGINEERING and b+ cAL
(‘C El (IR '
{(NASA-CR-192734) LECTURE MATERIALS N93-21308 AUG 26 1391
ggsnggE %TDS/MCS INTRODUCTQRY UNIVERSITY GF MAr < AND
Rensselaer Polytechnic A
Inst.) A ; Y Unclas COLLEGE PARK, MAR LM 0

G3/63 0153760

LECTURE MATERIALS FOR THE CTOS/MCS
INTRODUCTORY COURSE

by

Keith Fieldhouse, Kevin Holt, Don LeFebvre,
Steve Murphy, Dave Swift, and Jim Watson

Rensselaer Polytechnic Institute
Electrical, Computer, and Systems Engineering Department
Troy, New York 12180-3590

July 1991

CIRSSE REPORT #97

1

The CIRSSE testbed consists of two Unimation PUMA 6 degrees-of-Freedom
manipulator arms mounted on a 6 degrees-of-freedom (two 3 DOF carts on a
12 foot rail system) transporter platform. The testbed hardware is controlled
through several Motorola single board computers and associated VME /0O

Lecture Materials for the CTOS/MCS
Introductory Course

Keith Fieldhouse Kevin Holt Don Lefebvre
Steve Murphy Dave Swift Jim Watson

August 12, 1991

Abstract

On July 18 and 19, 1991 the Center for Intelligent Robotic Systems
for Space Exploration presented a course on its robotic testbed support
software as it then existed. The course materials are collected as a
reflection of the state of those systems at that time.

Introduction

boards.

The interface to the system is managed by a software system currently
under development at CIRSSE. This software has evolved into two distinct
sub-systems: the CIRSSE Testbed Operating System (CTOS) and the Mo-
tion Control System (MCS). The design of CTOS/MCS is driven by several

fundamental requirements:

e The system must provide a designed, convenient interface to the testbed
for both of its distinct user groups:

— Researchers who wish to work on the actual control of the testbed
devices. Such researcher may wish to substitute customized con-
trollers, trajectory generators, device interfaces etc.

— Researchers who require motion service from the testbed as part
of their research agenda, but who are more concerned with the re-
liability and repeatability of the motion rather than the algorithm
which produced it.

e As homogeneous an interface as possible should exist between the user
and the 18 degrees-of-freedom available in the testbed. Different exper-
imental set-ups should be possible, allowing the testbed to be treated
as two 9 DOF arms, one 18 DOF manipulator system, 3 6 DOF ma-
nipulators and so on. Further, it should be possible to reconfigure the
testbed with new manipulator devices as they become available.

e For performance reasons, the controlling software for the testbed runs
on multiple single board computers on a VME backplane. This intro-
duces a level of complexity that the software system must encapsulate
and hide as much as possible.

o The entire control system must be a part (at the execution level) of
overall CIRSSE hierarchy of intelligent robotic control.

As was noted earlier, two distinct software sub-systems are being devel-
oped to achieve these goals. The first, CTOS, is a layer of utility routines that
extend the base operating system, notably in the area of inter-process (and
inter-processor) communication and synchronization. The second, MCS, es-
tablishes the control and command interface to the testbed hardware.

At the time the CTOS/MCS course was presented the following software
had been developed:

e As part of CTOS:

— A bootstrap system which provides for the distribution of pro-
cesses across any of the Single Board Computers on a single VME
chassis.

o

- A message passing system which provides easy, efficient (though
not “realtime”) and flexible inter-process and inter-processor com-
munication.

~ A time synchronization library that allows multiple processes across
multiple processors by be synchronized at different clock rates.

— Other utilities that provide on demand synchronization, shared
memory access and protection and various other useful functions.

e As part of MCS:

— The MCS State Manager, which manages communication between
the devices available through the MCS.

— “Channel Drivers” (hardware interfaces) for CIRSSE’s transporter
platform and the two PUMA manipulators.

— Several different controllers (Basic PID, Gravity compensation)
for the PUMASs and platform.

— A simple trajectory generator capable of reading (from a file) and
interpolating between a series of joint space set points.

The development of the software to this level represented the substantial
achievement of an early CTOS/MCS milestone. Specifically, that enough of
the system be in place that members of CIRSSE not a part of the core devel-
opment team could make use of it. To further achieve this goal, an internal
CTOS/MCS course was developed, the materials for which are collected in
this report.

Divided into 3 lecture sections, a lab exercise period, a case study and
a round table discussion, the CTOS/MCS course ran over a period of two
days.

Due to the broad range of experience levels at CIRSSE, especially with
respect to real time programming issues, the first lecture section was a review
of C language programming, real-time and hardware programming issues and
the VxWorks operating system (a real time OS developed by Wind River
Systems of Alameda California and the software platform on which most
CIRSSE real-time development is done). The intent of the first section of
the course set out to insure that all course participants had at least some

degree of common vocabulary and understanding of the issues on which the
rest of the course was based.

Section I of the course lecture covered the CIRSSE Testbed Operating
System. This section was of particular importance, as CTOS is expected
to be the infrastructure on which most of the CIRSSE intelligent control
hierarchy is built. Thus, most of the class participants could be expected to
make use of the CTOS interface whether or not they make direct use of the
manipulator testbed.

After the first two lecture sections, the class was broken into groups to
work on a series of lab exercises based on the lecture material presented.
These exercises served to give the participants an opportunity to familiarize
themselves with both the programming environment established for testbed
development and the programming techniques used to work with CTOS.

Day two of the class covered the Motion Control System itself. This
portion of the class was of primary interest to those participants planning to
develop custom components for the MCS and who wished to participate in
the further development of the base components of the system. This lecture
section was followed by a case study of a typical MCS application and the
components that comprise it.

The remainder of this document contains are the lecture notes, supple-
mentary materials, lab exercises and solutions for the first CIRSSE CTOS/MCS
class. These materials are collected here solely as a reflection of the state of
development of the software and are in no way intended to supplant further,
more comprehensive documentation of the systems.

Acknowledgement

This work was supported by NASA Grant No. NAGW-1333.

CTOS/MCS

July 18 - July 19, 1991
Copyright (c) 1991, CIRSSE

Introduction and Overview

e [he Context of CTOS & MCS

e C Programming

e Realtime Programming and Distributed Pro-
cessing

o VXWorks

e [he CIRSSE Testbed Development Envi-
ronment

MCS/CTOS Course 1 Sy

Context of CTOS & MCS

e CTOS CIRSSE Testbed Operating Sys-
tem

e MCS Motion Control System

MCS/CTOS Course 2 Sy

Context of CTOS & MCS

Applications & Experiments

Testbed Components (MCS, VSS)

CTOS

VxWorks UNIX

MCS/CTOS Course 3

Context of CTOS

e Developed to overcome limitations in UNIX
and VxWorks with respect to interproces-
sor process communication, synchroniza-
tion and distribution

e Provides a framework and a consistent pro-
gramming interface for testbed components

and applications

e Provides an infrastructure for the develop-
ment of the Intelligent Machine

MCS/CTOS Course 4 Sl

Context of MCS

e Major interface to the testbed manipula-
tors

e Designed, implemented and tested with mul-
tiple manipulators

e Functional components may be replaced
and reconfigured with minimal intervention

e Developed in conjunction with CTOS and
the current design of the CIRSSE Intelli-
gent Machine hierarchy

MCS/CTOS Course 5 SIS

C for CTOS/MCS Programmers

e Syntax

e Pointers and Addresses

e T he C Pre-processor

e Sources of Information

MCS/CTOS Course 6

C Syntax — Literals

010

Oxf

)A)

’\007’

J\be

)\t)

“"Hello World"
HHIII IIMDMH

)\O)

A decimal integer, with value 919

An octal integer, with value 819

A hexadecimal integer, with value 151¢g I
A single character, the letter “A”

A single character, ASCII 71, the bell

A single character, ASCII 111¢, vertical tab

A single character, a tab

The character string “Hello World"”

The character string “HIMOM"”

The null character

MCS/CTOS Course

7 S

C Syntax — Functions

e All functions have a return type (which may
be void)

e All parameters are passed by value

Function syntax:

return-type

function-name (parameter-list or void)
{

declarations

statements

MCS/CTOS Course 8 SIS

C Syntax — Scoping Rules

/*

** File: example.c

*/

int x; /* Global Variable */

extern int y; /% Also defined as IMPORT */
static int z; /* Also defined as LOCAL */

int fun(int a, int b, int ¢)

{

int i;1i /* Automatic variable, local
to function fun */

static int count; /* Not automatic,
but still local to function fun */

for (i = 0; i < 15; i++) {
int e; /* Automatic variable
local to the for loop */
e =1+ y;
}
=d + i; /* Error, e is undefined x/

e
}

MCS/CTOS Course 9 SIE=

C Syntax — switch statements

e Multi-way decision

e Each case must be an integer constant

e Each case must be unique

e A break must be used to end a case

e A default case is available but not required

e The switch expression must evaluate to an
integer

MCS/CTOS Course 10 SHE=

C Syntax — switch statements

Switch Statement Syntax:

switch (variable) {
case 1:
/* Statements
break;
case 2:
/* Statements
return;
case 3:
/* Statements
case 4:
/* Statements
break;
default:
/* Statements
break;

for

for

for

for

for

case

case

case

case

*/

and 4 */

default case */

MCS/CTOS Course

C Syntax — Structures, Unions and Typedefs

e Aggregates of multiple variables, possibly of differ-
ent data types -

e May be copied and assigned to.
e May be passed to and returned by functions

e A structure contains space for all of its elements
while a union contains space for any one of its
elements

e An individual union must be used consistently

e A typedef provides an alias for a previously defined
type

MCS/CTOS Course 12 iy it

C Syntax — Structures

Structure Syntax:

struct point2d A
int x;
int y;
} pl, p2;

struct point2d p3;

To reference elements in the structure:

pl.x = 5;
p3.y = p2.x;

MCS/CTOS Course 13

C Syntax — Unions and Typedefs

union jointInfo {
float position[MAX_JOINTS];
int period[MAX_JOINTS];

Y
typedef union jointInfo JOINTINFO;

JOINTINFO jlist;

To reference elements in a union:

jlist.position[3] = 7.5;
jlist.period[5] = 4;

MCS/CTOS Course 14

Sulery=

C Pointers — Notation

e Genuinely an address: 0xffd0 not —

o Use & to get the address of a variables

e Use x to get the contents of an address
and to declare a variable as an address

MCS/CTOS Course 15 Silies 3]

C Pointers — Function parameters

e Pointers can be used to create argument
passing by reference:

void increment (int *p)

{

*p = xp + 1;
}

int x = 1;

increment (&x)

MCS/CTOS Course 16 SIS

.. '1’,___

Al
TUNIMTERC TR N s,

I e

ity e

C Pointers — Structures and Unions

Structure and Union pointers are often used
to avoid passing large data structures back
and forth. The usefulness of this construct
lead to a shorthand for dereferencing a
structure through a pointer to it:

struct test {
int a;
double b;
char c;

} t1 *pTest;

pTest = &t1;

(*pTest) .a = 5;
pTest->c = ’a’;

MCS/CTOS Course 17 SRR

C Pointers — Pointer arithmetic

e Integers may be added and subtracted from
pointers

e Conversion is done based pointer type

e Address exceptions can occur if alignment
isn't heeded

char buff[10];
char *pc = &buff[0];
int *pi = (int *)&buff[0];

MCS/CTOS Course 18 SIEE

C Pointers — Pointer arithmetic

pi__

pC_1

o1 (011 ([2 [[3]

buff

[4]

[5]

(6]

[7]

[8]

9]

*pc + 1

*pi + 1

MCS/CTOS Course

19

The C Pre-Processor

e Processes a file before it is seen by the
compiler

e Directives start with a # in the first col-
umn, keywords may be indented

e Used to define constants, macros and to
textually include other C source or “header”

files

MCS/CTOS Course

The C Pre-Processor — Include Files

#ifndef INCmyheaderh
#define INCmyheaderh

/* Constants and key words */

#define REDUCE (1)
#define EXPAND (2)
#define PI (3) /* For programming

in Georgia */
/* Macros */
#define FOREVER for(;;)
#define MIN(_x,_y) (x> _y?_y: _x)
#define dataReduce(_what) \
dataManipulate (REDUCE, _what)
#define dataExpand(_what) \
dataManipulate (EXPAND, _what)

/* Function prototypes */
int dataManipulate(int how; int what);

MCS/CTOS Course 21

SISy

C Pre-Processor — Inline Functions

Consider the following code, when used in the
macro MIN previously defined:

z = MIN(x++,y++);

Note that the arguments to the macro are
“x+4+" and “y+++", which will result in the
increment being done twice for “x" and “y".
Probably not the desired effect. One possible
solution is inline functions: Included in header
files as:

extern inline min(int x, int y)
{
if (x > y) return(y);

else return(x) ;

MCS/CTOS Course 22 Sii3S o]

C Pre-Processor — Inline Functions

e Not part of ANSI C but common and avail-
able with GCC

e Function replaces its call, but arguments
and scoping of variables handled as with
“normal” functions

MCS/CTOS Course 23 ity 3]

Sources of Information

e The C Programming Language, Second Edi-
tion, Brian Kernighan and Dennis Ritchie

(K&R)

e Using and Porting GCC, Richard Stallman

e The GCC manual page

MCS/CTOS Course 24 Ciitayis

VxWorks

VxWorks is the real time operating system
and development environment used at
CIRSSE for motion control and Datacube
based vision experimentation. Some features:

e runs on VME based single board
computers

e Rich run time library

e Object code compatibility with UNIX

e Close network compatibility with UNIX

e An interactive shell for debugging and
development

MCS/CTOS Course 25 S

VxWorks — Networking

VxWorks, when installed on a VME cage,
forms a backplane network. This is a TCP/IP
(Internet) network which uses shared memory
on the VME cage as a transport rather than
Ethernet cable. All of the nodes become
standard Internet nodes:

VME Backplan
vx4
vXx3
vx2
vx1 Laser
vx0 Datacube
Uranus Saturn
| | CIRSSE Backbone
Venus Sol

Ral

| RPI Backbone

MCS/CTOS Course 26 S

VxWorks — The Kernel

When a VxWorks system boots, it loads a
VxWorks kernel over the network from its
supporting host (Venus here at CIRSSE).
This kernel contains the main entry point of
the OS and all of the Wind River Supplied
code that has not been expressly eliminated
from the kernel. During the boot process, the
kernel's entry routine may read and execute a
user specified script of VxWorks shell
commands, or it may load and call user
specified code.

MCS/CTOS Course 27 SESE

VxWorks — Utility Libraries

IstLib Doubly linked lists

rnglLib Ring buffers

semlLib Intra processor semaphores

spyLib CPU performance monitoring

stdiolib C Standard I/O library

sockLib UNIX 4.3BSD compatible network sock-
ets

MCS/CTOS Course 28 SIEE

VxWorks — Kernel Selection

At CIRSSE there are numerous VxWorks
kernels available. For the most part they
contain the same set of VxWorks utility
libraries. Some however are built for the
Datacube, while others are built for the
Control Cage. Further, some of the kernels
support CTOS while others are built as raw
VxWorks development environments. To
select between VxWorks kernels, use the
command vxboot on any of the CIRSSE UNIX

systems.

MCS/CTOS Course 29 SiisS i

1/

—

VxWorks — Kernel Selection

When the vxboot command is used, it will
present you with a list of the CIRSSE
VxWorks processors for which you can select
a kernel, and two pseudo processors:

@control vx0 vxl vx2 vx3 vx4
@vision Jaser datacube

vx0 Control cage CPU 0 (MV135)
vx1l Control cage CPU 1 (MV135)
vx2 Control cage CPU 2 (MV135)
vx3 Control cage CPU 3 (MV135)
vx4 Control cage CPU 4 (MV135)
datacube Datacube CPU 0 (MV147)

laser Datacube CPU 1 (MV135)

MCS/CTOS Course 30 SR

VxWorks — Kernel Selection

Once you have selected the processors, you
may select a kernel. The kernels with a % in
their names should be selected only for the
Pseudo processors.

control.ctos.* CTOS Kernels for Control Processors

control.ctos.mv135 Kernel with CTOS support for
Control Cage

control.default.* Development Kernels for Control
Processors

control.default.mv147 Kernel for Control Cage
development (VxWorks V5)

vision.ctos.* CTOS Kernels for Vision Processors

vision.default.* Development Kernels for Vision
Processors

vision.default.mv135 Kernel for laser control
processor

vision.default.mv147 Kernel for datacube main
processor

MCS/CTOS Course 31 SIS=

VxWorks — The Shell

The VxWorks shell provides the user with a
simple interactive interface to a system
running VxWorks. It has the following
commands/features

e cd "/home/krf/vxworks" will set the default
directory to */home/krf/vxworks”

e 1d < filename.o will load the object code in
“filename.o” into the running VxWorks system

e < filename will read a script of VxWorks shell
commands from ‘“filename”

e i will display a list of running processes

e function(5,6,7) will call any globally defined C
function (which may be either VxWorks or user
defined). In this case the function is passed the
arguments “4", “5" and “6"

MCS/CTOS Course 32 SEE

VxWorks — Dynamic Linking

VxWorks has the unique ability to dynamically
link an object module with an already running
system. This is accomplished by creating a
standard UNIX object module and loading it
with the shell’'s 1d command. This dynamic
linking has the following characteristics:

e All global symbols are added to the system symbol
table

e When symbols are loaded which have the same
name as already loaded symbols, the old symbols
are effectively replaced

e Multiple UNIX object modules may be pre-linked
with the UNIX 1d command to form a single
object module

e Unresolved references in an object module must
be resolvable at load time

MCS/CTOS Course 33 Sy

VxWorks — Dynamic Linking

Object files appropriate for the VxWorks
environment here at CIRSSE may be created
with the following command:

vxgcc filename.c

e Only creates object modules

e Causes C pre-processor to ook in
VxWorks directories

e Uses cross compiler on SPARC (Sun4)
based systems

MCS/CTOS Course 34 SIS

VxWorks — Further Information

o VVxWorks Programmer’s Guide

o Using VxWorks at CIRSSE, Tech Memo
#3

e [he VxWorks manual pages
vwman 1lstLib For VxWorks utility functions

vwman mv135/sysBusTas For board specific Vx-
Works functions

MCS/CTOS Course 35 Sy

Realtime, Hardware and Distributed
Programming

Realtime Programming Programming in which
the correctness of an operation is depen-
dent not only on its result but on the time

at which the result is achieved

MCS/CTOS Course 36 iy

Realtime, ...

Most of the development to date on CTOS
and the MCS have been in the VxXWorks
based ‘“realtime” hardware development
environment. There are several
characteristics of this environment that
provide special challenges:

e The operating system is much less sophisticated
and protective. Accessing memory that is more
likely to crash the system than anything else

e Shared resources may be contended for among
many processors as well as processes

e Communication must take place between
processes and processors

e Hardware interfaces often must be built from
scratch, utilizing the device registers, interrupts
and other tools often hidden by multi-user
Operating Systems such as UNIX

MCS/CTOS Course 37 SESE

Realtime, ...— Hardware Programming

Often it is necessary to set bits in a control
register on a particular hardware interface
board. Consider the following Control Status
Register on an I/O board. Bit 3 must be set
to a 1 in order to enable the board:

#define IOCSR ((volatile char *) OxfffffdfoO)
#define ENABLE (0x04)

I0OCSR |= ENABLE; / Enable the board */
xI0CSR &= ~ENABLE; /* Disable the board */

MCS/CTOS Course 38 ST

Realtime, ...— Hardware Programming

Often, in realtime programming, it is
necessary to insure that a function is
re-entrant (for ISR's, Event Handlers or
functions that are called by same). This
means that it must not be an error to call a
function when some other version of that
function is still running. To ensure
re-entrancy keep the following in mind:

e Do not maintain static automatic
variables

e DO not use global variables

e Do not arbitrarily use finite resources

MCS/CTOS Course 39 SES=

Realtime, ...— Resource Contention

In a distributed or multi-tasking environment
it it often possible for multiple threads of
execution to require the use of some limited
resource. It is often necessary to arbitrate the
use of this resource to prevent improper
action. The semaphore can be used to
construct protection for shared resources.

There are two basic semaphore operations:

MCS/CTOS Course 40 SIS

Realtime, ...— Resource Contention

TAKE(s) The take operation determines if the
semaphore “s” is available. If it is, it is
removed (made unavailable to other pro-
cesses) and the thread of execution may
continue, using the protected resource. Note
that the testing of the semaphore and the
removal of it must be indivisible operations

GIVE(s) The GIVE operation simply replaces
an already removed semaphore

MCS/CTOS Course 41 =

Realtime, ...— Memory

A peculiar aspect of many realtime
programming environments (including the one
at CIRSSE) is that memory is shared among
all processes and often among processors.
This provides a convenient method of inter
process communication (when coupled with
semaphores etc.).

CPUO CPU 1 4 Meg.
1 Meg. 1 Meg
Dual Port Single Port

\ Bus

MCS/CTOS Course 42 S

Testbed Development

bin
n

Datacube lib
sh
share
bin

) sun3
DN sund
a}
. sun3
I|:< sund
s
installed bin
config————— callib

M68HC 11

UNIX

i

VxWorks lib
sh
share

ZN

config

man}

man2

man3

maon7

man8

ctUtils
gripperDiagnos
manViewers
purmaDbiagnostic
testBed

man

It

apps

A

CIRSSE vxUtils

/ config oisLb

ctos msglib
synclib

\

doc
include
armlib
cailib
cirsselib """ w\%orks
cusrlb
dalb
diolib
enclib
gnuLib
lib grlib
1semLib
imLib
mbxAuxLib
moveLlib
pitLib
platlib
purmatib
unixlib
usrintlio
chanlib
controli
mcslib
stotelib

T
e .
UNIX e 0
bin muh;ipla
VxWorks< sngle
lipy e ;}:,”g,'ep‘e

src

mcCs

/1\

samples

custom
localfarget-<<_ g

AN

MCS/CTOS Course 43

Testbed Development — Imake

In order to maintain some degree on
manageability for software that has been
developed for multiple platforms and multiple
operating systems, the CIRSSE testbed
development environment makes heavy use of
the Imake system developed for the
distribution of the X Window System.

MCS/CTOS Course 44 IR

Testbed Development — Imake

e A user of Imake creates creates an Imakefile in
which he or she specifies the targets that should
be built, and the files that make up that target

e When creating the Imakefile, the user makes use of
pre-defined macros that are tailored to the specific
system (in this case, the CIRSSE testbed) for which
development is being done.

e Imake reads the user's Imakefile and the system
macro definitions and creates a standard UNIX Makefile
which can be called with the make utility

e To create a Makefile, type cmkmf in a directory in
which an Imakefile exists. (Mnemonic: cmkmf ==
Cirsse MaKe MakeFile)

o If cmkmf is called with arguments, make is automati-
cally called with those arguments once the Imakefile
is converted

MCS/CTOS Course 45 SE=

Testbed Development — Imake and cmkmf

AllTarget (exl.o ex2.0)
VxWorksBinTarget (exl.o0,header.h,)
VxWorksBinTarget (ex2.0,header2.h,)
VxWorksBinTarget (ex3.0,header.h,)
Produces

all : exl.o ex2.0 ex3.0

exl.o : exl.c header.h

ex2.0 : ex2.c header2.h

ex3.0 : ex3.c header.h

MCS/CTOS Course 46 Sy

Testbed Development — Naming Conventions

Project Prefix A 3 to 6 letter sequence that uniquely
identifies a project or component. bts, msg, ipb

Functions Upper and Lower case, no underlines. Each
word (but the first) is capitalized. Public functions
start with the project prefix. Object verb arrange-
ment. ipbClear, mcsSlotReserve

Variables Same as functions. mcsSMTid, ipbFlag

Constants All upper case. Each word separated by an
underscore. Public constants start with the project
prefix. MCS_MAX_SLOTS

MCS/CTOS Course 47 SIESS=

——

Testbed Development — File Organization

/ *
/ *
k5
% X
% X
% X
%k

%k %k

*/

/%

/ *
% 3%

% %k

% %

*/

MCS/CTOS Course 48 Sy

WWh hGh */
File:
Written By:
Date:

Purpose:

Modification History:

Include section */

3k 3k 3k 5k 5k 3k 3k 3k 5k 3K 3k 5k 5k 3k 3k 3k 5k 3k 3k 5k 3k 5K 3k 3k 3k 2k 3k 3k 3k 3k 3 3 3k 3k 3k 3k 3k 3K 3k 3k %k %k 4 %k %k ¥ Xk %*

Function:
Purpose:

Returns:

Testbed Development — Other Conventions

e Separate system specific code as much as
possible — code may very well be compiled
for separate operating systems

e Use function prototypes to ensure type check-
ing of parameters and return values

e Documentation for most components will
include manual pages for public functions
and Technical Memos for extensive libraries
of functions

MCS/CTOS Course 49 SIEE

CTOS/MCS

Section ll: CTOS

Outline of CTOS Topics

Processor/ Task Configuration
e CTOS kernel & configuration files

e configuration file commands

Message Passing
e building messages
e message passing mechanisms

e managing message data

Event Handler Tasks
e designing an application
e format of event handler functions

e default processing of commands

CTOS Bootstrap Phases
e initialization phases

e application executive

Synchronous Processes
e creating & attaching sync processes

e communicating with sync processes

MCS/CTOS Course 1 SR

CIRSSE Testbed Operating System

CTOS supports development of distributed
applications by providing means to:

e distribute processes among CPUs
e communicate between processes

e synchronize execution of processes

MCS/CTQS Course 2

- i
SGSE

Configuration Files

Application Configuration File

e specifies chassis (pl.) used by application and
names of chassis config files

e implicitly defines chassis interconnections

e currently (mid-July '91) being developed

Chassis CTOS Configuration Files
e one CTOS config file per chassis

e provides chassis-specific CTOS configuration in-
formation e.g. CPU interconnections & distri-

bution of CTOS tasks

Chassis User Configuration Files
e one user config file per chassis in application

e defines where application software is loaded and
what application tasks are created

MCS/CTOS Course 3 IR

CTOS Startup

Existing VME Chassis Startup

1.
2.

User defines application in user config file

User specifies user config file in 'ctconfig’ com-
mand

VxWorks & CTOS kernels load & start when
boot VME cage

CTOS reads chassis CTOS config file & starts
remainder of CTOS

User config file is processed to load application

software and create application tasks

CTOS broadcasts messages to synchronize ini-
tialization phases

“Application executive” takes over at start of
AEXEC phase

MCS/CTOS Course 4 e

CTOS Startup

Planned Sun/VME Multi-chassis Startup

1. User defines application in application config file
and chassis user config files

2 CTOS kernels are preloaded and service dae-
mons started to wait for application startup re-

quest

3. User starts application from command line of
Sun or VME chassis

4. — 7. same as existing VME chassis startup

MCS/CTOS Course 5 TR

Config File Command Syntax

CPU_NUMBER COMMAND ARGUMENTS ...

e All CPUs on a chassis read the same config file,
but only process lines that match their CPU

number

e Except, lines with CPU_NUMBER of -1 are
processed by all CPUs

e CPU_NUMBER must start in column 1

e COMMANDS are separated from CPU_NUMBER
by one or more spaces, and may be upper or lower
case

e ARGUMENTS are different for different
commands, and are similarly separated by space(s)

e Comment lines begin with "#' or ' ' in column 1;
hence blank lines are ignored

MCS/CTOS Course 6 Gy

Config File Commands

en LOAD /path/filename
— load object module into local memory

— order of loading files is important
« usually load shared global variables first

« must load C function before loading code that
calls that function

« all functions used by a task must be loaded
before the task is created

— uses /path/ if given, otherwise finds filename in
current directory

e N SHARE /path/filename hex_address

— load object module into specified memory ad-
dress

— primarily used to load global variables into shared
memory

— usually set hex_address to OxO, which causes
load into address immediately following previ-
ous SHAREd object module

— must SHARE same files in same order on any
CPU that receives SHAREd objects

MCS/CTOS Course 7 SIS

Config File Commands, Con't

e N TASK sym_name func_call priority
— create an event handler task

— symbolic_name must be unique throughout ap-
plication, and be < 24 characters

— function_call specifies the name of the C func-
tion that executes the event handler code

— application task priorities should be in the range
of 100 - 255; CTOS and VxWorks use priorities
< 100

en INCLUDE /path/filename

— suspends processing of current config file and
begins processing commands from specified
/path/filename

— processing of original config file resumes after
completion of included config file

— include files may be nested to any depth

— CAUTION: use of CHDIR within an include file
will change current directory for original config
file

MCS/CTOS Course 8 Ciiey i

Config File Commands, Con't

en CHDIR /path/

— changes the current directory to /path/ for sub-
sequent LOAD, SHARE and INCLUDE com-
mands that do not explicitly specify a path

en ECHO ON|OFF| text

— ECHO effects what is printed to the console
display during config file processing

— ECHO OFF will turn off information and warn-
ing messages, but error messages will be dis-

played

— ECHO ON or ECHO followed by text will turn
on all message printing, and will display 'text’
to the console

e N LOGO /path/filename

— specifies a file that will be displayed on the con-
sole when the application starts

— the full /path/ to the logo file is REQUIRED

—— refer to 'ctos_config’ manual pages for the most
current information on config file commands MCS/CTOS

Course 9 SITERE

Example User Configuration File

Configuration File for Example Application

‘’include’ command reads another config file
-1 include /home/mydir/some_standard_config_stuff

’chdir’ command changes current directory
-1 chdir /home/mydir/

’load’ command loads obj module
-1 load xyzLib.o

O load mcsControl.o

1 1load pidLoops.o

1 load platIoChannel.o

2 load armIoChannel.o

3 load armIoChannel.o

2 load trajGen.o

4 load myApplication.o

’task’ command creates event handler task
0 task MCS_Control mcsMain 100

1 task PID_1 pidAlgo 150

1 task PID_2 pidAlgo 150

1 task PID_3 pidAlgo 150

1 task platlO platHandler 150

can mix load & task commands

3 load debug.o ‘

3 task Datalogger dbgLog 75

MCS/CTOS Course 10 e

CTOS Supports Two Forms of
Interprocess Communications

e.g. MCS:

10 - 40 ms

CLIENT INTERFACE
LAYER

L 1

MCS APPLICATIONS
LAYER

L

MOTION PLANNING
LAYER

L1

MOTION CONTROL
LAYER

L

TESTBED INTERFACE
LAYER

LT

HARDWARE

Asynchronous
Communications
(message passing)

Synchronous
Communications
(shared memory

& interrupts)

MCS/CTOS Course

11

Message Structure

struct MSG_TYPE
{
TID_TYPE dest ;
TID_TYPE source ;
CMD_TYPE command ;

void *data ;

int datasize ;

FLAG_TYPE flags ;

}
dest TID of destination (receiving) task
source TID of source (sending) task
command indicates function of the message
data points to additional message data
datasize byte length of additional data
flags specifies message handling options

MCS/CTOS Course 12

e

Message Commands

e The .command member of MSG_TYPE structure
is used to indicate the function of a message

— CMD_TYPE is 2-byte unsigned int — over 65,000
unique commands

— usually msg.command is equated to a predefined
constant
e Message command conventions
— names are upper case and begin with MSG_
— values are assigned as offsets to blocks of com-
mands
e Standard messages
— MSG_PINIT: begin process initialization
— MSG_AINIT: begin application initialization
— MSG_AEXEC: begin application execution

e User-defined messages

— define as offsets to MSG_USER, e.g.

#define MSG_MY_MESSAGE MSG_USER+1
#define MSG_ANOTHER_MSG MSG_USER+2

—cr—,

MCS/CTOS Course 13 ST

Message Flags

PRIORITY MEMOWNER
___/

SEND REPLY | TYPE
WAIT WAIT

TYPE normal, reply, etc. (used by system)

REPLY_WAIT if set, sender will wait for reply

SEND_WAIT waits if receiver queue is full

MEMOWNER specifies who deallocates message data

PRIORITY urgent msgs go to front of queue,
normal to back

Using predefined message flags is recommended:

MF_STANDARD normal priority, receiver owns
memory, no waiting

MF_REPLYWAIT normal priority, receiver owns
memory, wait for reply

MCS/CTOS Course 14 SiiesSi

Task ID & Message Routing

TID = Chassis# + CPU# + LocalTask#
up to 16 | up to 16 | up to 256
Chassis CPUs Local Tasks
msg.dest

on remote
hassis

Send msg & data out via internet

Enqueued on local queue

Translate *data to bus address,
then send msg to other VME board

MCS/CTOS Course 15 SIS

Normal Message Passing Mechanism

Local CPU : Remote CPU
Q Source Task
(+ SOCKETS
remote §
msgSend() - ! MESSAGE
i DISPATCHER
local §

= @

Destination Tasks

MCS/CTOS Course 16 SIS

Message Reply Mechanism

Source Task

msgSend() —]

O

@ Send message

Block sending task on
semaphore

@ msgSend() returns reply data

Destination Task

1

ZQ R S

P —

msgReply()

@ Receive message

@ Send reply

@ Unblock sending task

MCS/CTOS Course

17 Sl G

Message Broadcast Mechanism

TASK 01

SERVER |+ MSGSVRO —(4 “|1ask 02

d) CPU x .
1 TASK x1

SOURCE - —(3)
TASK MSGSVRx 4—-——@- V1ask x2
CPU .
y TASK y1
"IMSGSVRy ® .
o—@ lrask ye2

MCS/CTOS Course 18 Siicoy i

Managing Message Data

% data =
message >

message

— datasize
data data

MEMOWNER = SENDER

e message sender ‘“owns’ memory allocated to
message data

e message receiver should consider message data
to be READ ONLY

e message sender is responsible for deallocating
message data once it is no longer needed

MEMOWNER = RECEIVER

e message sender allocates memory for message
data and “gives it away” to message receiver

e message data is automatically deallocated when
receiving task exits event handler function

e use msgDataKeep or msgDataCopy to retain
message data by receiver

MCS/CTOS Course 19 -SIE

msgLib Functions

e Sending Messages

msgSend
msgPost
msgBroadcast
msgErrorlLog
msgReply
msgAcknowledge
msgBuildSend

e Building Messages

msgBuild
msg TypeFlagSet, etc.

general form of send

post msg returns immediately
send to all tasks

send string to Error Server
reply to message
acknowledge received msg
build then send msg

set members of struct
set fields of flags

e Working with Task Id’'s

msgTidQuery
msgTidGetCpu, etc.
msgTidSetCpu, etc.

e Queue Operations
msgDequeue

msgQueueCount
msgRequeue

find task id from name
get fields of tid
set fields of tid

read message from local queue
count msgs in queue
put message into local queue

MCS/CTOS Course

20 G

msgLib Functions, Con't

e Memory Management

msgCopy make copy of message
msgDataCopy make copy of message data
msgDataKeep keep message data
msgVarPtrSet set pointer to variables
msgVarPtrGet get pointer to variables

e Special Processing

mMsgACKAINIT acknowledge AINIT
msgDefaultProc default processing for msgs

—— See 'msglLib’ manual pages for details of these
functions

MCS/CTOS Course 21 SIS

msgBuild Function

MSG_TYPE #*msgBuild (MSG_TYPE *msg ,
TID_TYPE dest ,
TID_TYPE source ,
CMD_TYPE command ,

void *data ,

int datasize ,

FLAG_TYPE flags)
MSG_TYPE *msg - pointer to message struct or NULL
TID_TYPE dest - address of destination task
TID_TYPE source - address of task sending message
CMD_TYPE command - message command
void *data - pointer to additional message data
int datasize - number of bytes in message data
FLAG_TYPE flags - message flags

msgBuild provides a convenient way to define a
message. The arguments to msgBuild are used to
define the members of the message structure, whose
address is passed in as the first argument. If *msg ==
NULL then msgBuild will allocate storage.

RETURNS: Pointer to message that was built

MCS/CTOS Course 22 SiiesS]

msgFlagSet Functions

msgMemownerFlagSet - set MEMOWNER field of flag
msgPriorityFlagSet - set PRIORITY field of flag

msgReplyFlagSet - set REPLY_WAIT field of flag
msgSendFlagSet - set SEND_WAIT field of flag
msgTypeFlagSet - set TYPE field of flag

FLAG_TYPE msgMemownerFlagSet (base_flag, field)
FLAG_TYPE msgPriorityFlagSet (base_flag, field)
FLAG_TYPE msgReplyFlagSet (base_flag, field)
FLAG_TYPE msgSendFlagSet (base_flag, field)
FLAG_TYPE msgTypeFlagSet (base_flag, field)

FLAG_TYPE base_flag - base flag
FLAG_TYPE field - new value for flag field

These functions are used to manipulate the fields of a
message .flags member. The actions of these
functions are to replace the particular field of the base
flag with a new value. For instance, the following
function calls change the MEMOWNER field:

msg.flags = msgMemownerFlagSet (msg.flags, MF _MEMOWNER_SENDER) ;

msg.flags = msgMemownerFlagSet (MF_STANDARD, MF_MEMOWNER_SENDER);

RETURNS: flag resulting from changing 'field’ of 'base
flag’

MCS/CTOS Course 23 SIESE

msgSend Function

int msgSend (MSG_TYPE *msg)

MSG_TYPE *msg - pointer to message to be sent

msgSend is the most basic form of message passing,
and the most frequently used. The message pointed to
by the function argument contains all of the
information needed by msgSend to route and handle

the message.

RETURNS:

If reply flag set to REPLY_WAIT_NO:
OK message was successfully sent out.

ERROR error occurred during message passing;
or if SEND_WAIT_NO is set, MsgDispatcher is
busy or destination task’'s queue is full.

If reply flag other than REPLY_WAIT_NO:

msgSend returns *data from reply message (cast
as an integer).

MCS/CTOS Course 24 SIS

msgReply Function

STATUS msgReply (MSG_TYPE x*msg ,

void xdata ,

int datasize ,

FLAG_TYPE flags)
MSG_TYPE *msg - pointer to received message
void *data - pointer to reply data
int datasize - size of reply data

FLAG_TYPE flags - message flags

The msgReply function is used to reply to a received
message. Its primary uses are to respond to requests,
and to acknowledge synchronization messages.

The data pointed to by *data of msgReply is sent via
the reply message and is received by the (now
unblocked) originating task as the return value of
msgSend. However, the *data pointer is ignored when
replying to a broadcast message; sO msgSend must be
used (AFTER acknowledging the broadcast if
required).

RETURNS: OK or ERROR indicating success of
sending out reply

MCS/CTOS Course 25 S

msg TidQuery Function

TID_TYPE msgTidQuery (TID_TYPE tid, char *taskname)

TID_TYPE tid - task id of task calling msgTidQuery
char *taskname - symbolic name of task whose TID is
sought

The msgTidQuery function sends a message to the
Tid Server on CPU 0O requesting the TID of the task
with symbolic name *taskname.

While msgTidQuery is waiting for a reply, the task that
called msgTidQuery is blocked. As there is a potential
delay, msgTidQuery should not be used within a fast
synchronous process, except during initialization.

RETURNS

If query is successful, returns TID of *taskname.

If query does not succeed, returns 0.

MCS/CTOS Course 26 SITRE

msgTidSet & msgTidGet Functions

TID_TYPE msgTidGetChassis (TID_TYPE tid)
TID_TYPE msgTidGetCpu (TID_TYPE tid)
TID_TYPE msgTidGetLocal (TID_TYPE tid)
TID_TYPE msgTidSetChassis (TID_TYPE tid, int number)
TID_TYPE msgTidSetCpu (TID_TYPE tid, int number)
TID_TYPE msgTidSetLocal (TID_TYPE tid, int number)

TID_TYPE tid - task id to be manipulated
int number - new value of TID field

These functions are used to access the fields of a TID.
For instance, msgTidSetCpu will set the CPU field of a
TID to a specified value, and msgTidGetCpu will
return the value of the CPU field.

These functions are implemented as macros, and the
msgTidSet functions will directly change the TID
value. Hence, the following are legal statements and
are equivalent:

msg->dest = msgTidSetCpu (msg->dest, 0) ;
msgTidSetCpu (msg->dest, 0) ;

RETURNS:
msgTidGet functions: value of the TID field

mngidSét functions: whole TID after setting field

MCS/CTOS Course 27 — SIS

Structuring An Application

e Identify major operations & data flows

use standard software engineering techniques

e Group operations into tasks

logically group family of related operations into
one task

concurrent operations should be separate tasks

consider single manager task for operations that
must be serialized

assign unique symbolic name to each task

e Describe inter-task communications

define messages & data being passed

roughly, each message corresponds to a different
operation

draw a diagram showing tasks & message ex-
changes

identify communication partners (who sends mes-
sage and who receives it)

keep high volume communications on same CPU
if possible, or at least same chassis

MCS/CTOS Course 28 IR

Structuring An Application, Con‘t

e \Write event handler functions

— design ‘“application executive” to perform main
execution sequence

— build event handlers to interface to synchronous
processes
e Build configuration files
— assign tasks to CPUs

— dependencies of function calls determine order
to load object modules

MCS/CTOS Course — 29 Sy

Event Handler Tasks

e An

event handler task consists of
event handler shell (with stack)
event handler function

message queue

storage for reply message
semaphore to wait for replies

pointer to saved variables

e Event handler shell manages the message queue and
message data

e Event handler shell calls the event handler function
when there is a message to process

e Event handler function is given TID of current in-
stantiation of the function and pointer to the mes-

sage

e Event handler function exits to shell after process-
ing each message

MCS/CTOS Course 30

> o] uin e ! g |
SS=

Format of Event Handler Function

int FunctionName (TID_TYPE myTid, MSG_TYPE *msg)
{

switch (msg->command)

{

case MSG_AINIT:
/* application initialization * /
break ;

case MSG_ONE;
/* process message one */

break ;

case MSG_TWO;
/* process message two */

return (0) ;

}

/* default processing of commands */
return (msgDefaultProc (myTid, msg));

3

MCS/CTOS Course 31

Tid Server Event Handler Function

int btsTidSvr (TID_TYPE myTid, MSG_TYPE *msg)
{
TASKREC *task ;
TID_TYPE result ;

switch (msg->command)
{
case MSG_REGISTER_TID:
/* add tid to symbol table */
task = (TASKREC *) msg->data ;
symAdd (tidTbl, task->name, &task->tid, 0)
return (0) ;

case MSG_QUERY_TID:
/* find tid in symbol table */
if (symFindByName (tidTbl, msg->data, &result,
NULL) == ERROR)
result = 0 ;
msgReply (msg, (void *)result,
MS_KEEP_ADRS, MF_STANDARD) ;
return (0) ;

}

/* default processing of commands */
return (msgDefaultProc (myTid, msg)) ;

}

MCS/CTOS Course 32 e

Request to Tid Server

TID_TYPE msgTidQuery (TID_TYPE myTid, char xtaskname)

{
MSG_TYPE msg ;

/* send message to TID Server */

msgBuild (&msg, /* message */
TIDSVR, /* dest * /
myTid, /* source */
MSG_QUERY_TID, /* command */
taskname, /* *data */
sizeof (taskname), /* datasize */
MF_REPLYWAIT /* flags */
)

/* return TID in reply message */
return ((TID_TYPE) msgSend (&msg)) ;

}

MCS/CTOS Course 33 Sy

msgDefaultProc()

e msgDefaultProc function provides default process-
ing of system messages, such as PINIT and AINIT;
plus acknowledges REPLY_WAIT messages

e Most event handler functions will have a similar for-
mat with switch/case statements used to decode
the msg.command, and a call to msgDefaultProc
at the end

e When the event handler function is ended by the
recommended

return(msgDefaultProc (tid, msg))

— ending case statement with break will cause a
call to msgDefaultProc

— ending case statement with return(0) will bypass
default processing

e When an application fails to boot and run, a highly
likely cause is an event handler task improperly re-
sponding to a system message due to bypassing
msgDefaultProc

MCS/CTOS Course 34 SIESE

Reentrant Event Handler Functions

e Any number of event handler tasks can be created
with the same event handler function provided:

— task symbolic name is unique, and
— event handler function is reentrant

e Local variables are OK because each task has its
own stack

e Functions with no static variables are reentrant

e If need static variables
1. define structure to hold all static variables

2. during PINIT, allocate memory for static vari-
able structure and initialize its members

3. while still in PINIT, save pointer to this struc-
ture with msgVarPtrSet function

4. use msgVarPtrGet function to retrieve pointer
to static variable structure (may want before
switch statement)

MCS/CTOS Course 35 SIS

CTOS Bootstrap Synchronizes Startup
by Stepping Through Phases

e Process Initialization Phase (PINIT)

— can initialize an individual process

— other processes may not yet exist

e Application Initialization Phase (AINIT)

— all processes guaranteed to exist and to have
completed PINIT phase

— use msgTidQuery function to find TID of com-
munication partners

— can perform initialization between processes

° AppliCation Execution Phase (AEXECQ)

— all processes guaranteed to have completed AINIT
phase

— begin execution of application when receive AEXEC
message

— likely will have only one task controlling the ap-
plication (the application executive)

MCS/CTOS Course — 36 SIS

(W)

Default Processing of “Phase Messages”

e Bootstrap phase is begun via a broadcast message

— CTOS_Boot is blocked while REPLY_WAITing

e Phase ends when all tasks have acknowledged the
broadcast message

— if one task fails to acknowledge it will block the
whole application

— for this reason it is important to call msgDe-
faultProc to ensure that all system messages
are properly processed

e If you want to defer acknowledging completion of
AINIT phase:

1. end case AINIT with return(0) to bypass default
acknowledgement

2. complete application initﬁialization processing

3. explicitly acknowledge AINIT with msgACkAINIT
function

MCS/CTOS Course 37 S35

Application Executive

e CTOS_Boot task controls initialization

— loads application software & creates application
tasks

— broadcasts messages to start bootstrap phases

e Application executive task controls main execution
sequence of the application

— user writes new application executive for each
new application

— may be the only task that responds to AEXEC
message

— responsible for coordination of application tasks

— provides synchronization if additional phases are
needed

— commonly will send messages to itself to pro-
vide opportunity for in-coming messages to get
through

— alternatively, can use queue management func-
tions to access its message queue

MCS/CTOS Course — 38 SHESRE

Synchronous Service

presented by
Jim Watson

Other resources for follow-up information:
e Tech Memo #4
e On-line man pages (TBD)

e Kevin Holt and Dave Swift—designers of the robot
channel drivers.

MCS/CTOS Course 39 SIS

Qutline

e Purpose

e Data- vs. Time-Synchronization

e Design And Implementation
— desired functionality
— architecture
- PQ
— LSPH

e Booting The Synchronous Service
e Initializing The Synchronous Service

e Use With Message Passing

MCS/CTOS Course — 40 e

Purpose

Primary purpose: provide a paradigm that sup-
ports high speed, low latency, time-syn-
chronization of multiple processes distributed
throughout the VME Cage. Typically, pro-
cesses using this service will require syn-
chronization every 5—40ms, although syn-
chronization periods have no practical up-
perbound.

Secondary purpose: to maintain a system clock
on the VME Cage.

MCS/CTOS COUI’SE 41 LT N)

Data- Vs. Time-Synchronization

The distinction is what makes the process runable.

Example:

0 by

wait for activ'n activate every second

flash strobe

\ /

4 B!

wait for activ’'n activate on keystroke

get char from kb 1

process char
J

MCS/CTOS Course 42 R

Data- Vs. Time-Synchronization

Data-synchronized processes can be forced to be

time-synchronized. Risk losing data and/or wasting

resources.

@ B!

wait for activ'n

activate every second

char avail?
no es

get char from kb

process char

N /

MCS/CTOS Course

43

Data- Vs. Time-Synchronization

Robotic example:

e PUMA joints angles read & torques written every
5ms by the PUMA 1/O driver

e 6 joint PID controller

e an independent safety process, running in the back-
ground, checks actual PUMA position every 500ms

The PUMA 1/0O driver and safety process are
time-synchronous. The PID, although in lock-step
with the I/O driver, is data-synchronous.

MCS/CTOS Course 44 SiiG i

Design And Implementation

Desired functionality:
e System clock

e High speed, low latency synchronization of
distributed processes

e Starting/stopping synchronization on-the-fly
e Detecting faults within synchronous service
e Detecting/processing overruns in user code
e Mechanism to control scheduler loading

e Compatiability with simulations and *real”
experiments

e Aid debugging

e Minimal hardware resources (clocks, interrupts,
etc.) |

MCS/CTOS Course 45 ST

Design And Implementation

Architecture:

e Maintain local information on each CPU 1—4, with
CPU 0O as master.

e Attach ISR on CPU 0O to the auxiliary clock chip.
Choose an appropiate interrupt rate, and have
CPU O maintain system clock, which is stored in
global memory.

e System clock can be accessed by user on all CPUs
via function call that extracts clock value from
global memory.

e CPU 0O generates bus interrupt (using LM
interrupt). This serves as the synchronization
heartbeat.

e ISRs on CPUs 1—4 respond to LM interrupt and
manage local synchronous process activations.
The ISR is the guts of the local synchronous
process handler (LSPH).

e Functions on CPUs 1—4 provide user with
interface to the LSPH.

MCS/CTOS Course 46 G

Design And Implementation

P®, (the ISR on CPU 0):

e Responds to clock chip interrupts throughout
entire experiment.

e Maintains state flags for system clock on/off &
LM interrupt enabled/disabled.

e Time Units: MCS-TU = 0.1ms. Time stored in
system clock is an integer number of MCS-TUs.

e Clock Update Rate: MCS-CUR = 0.9ms. Period
between clock chip interrupts.

e Time Scale: MCS-TS, integer > 1, set by user
(typically 1). Number of clock chip interrupts
between system clock updates and LM interrupts.
Thus, factor between real-time and system-time.

e Time Phase: MCS-CP, integer > 1, set by user
(typically 1). Number of clock chip interrupts
before the first ISR action.

e Small errors in system clock can occur due to
hardware limitations (see Tech Memo).

MCS/CTOS Course 47 SR

PO: State Flags

MCS/CTOS Course

clock on
LM interrupts enabled

clock on
LM interrupts disabled

clock off
LM interrupts disabled

48

w)xyl_l

——

P@: Interrupts

clock
chip

PO

r

int ev 0.9s
P

wait for activ'n

VME
bus

F

is clock on?

no

dec int cntr

is cntr 07

no

inc sys clock

int cntr ;= TS

LM int enabled?

no

ATAL

LSPHs idle?

ERROR _N°

MCS/CTOS Course

gen LM int

49

I e T | . v] o |
SHIGSE

P@: System Clock

0.0

0.9

1.8

2.7

3.6

4.5

5.4

real time

scaled time

sys time

0.0

0.9

1.8

2.7

3.6

4.5

5.4

real time

scaled time

sys time

0.0

0.9

1.8

2.7

3.6

4.5

5.4

real time

scaled time

sys time

MCS/CTOS Course

50

Design And Implementation

LSPH (Local Synchronous Process Handler):

e Responds to LM interrupts and manages
synchronous processes on local CPU.

e A synchronous process (referenced by handle)
includes:

— a synchronous task and synchronous
semaphore

— an overrun task and overrun semaphore
— a synchronization period and phase
— a running flag

— status registers and data (synchronization
enabled/disabled, disable pending and disable
time, overrun pending and overrun time)

e Contains a functional interface for user to
add/delete/control synchronous processes.

MCS/CTOS Course 51 S

LSPH

Two ways of attaching a synchronous process:

e More flexible, low-level function:

— synchronous and overrun tasks are spawned by
user with taskSpawn with arbitrary parameters
(e.g., stack size, priority)

— semaphores are created by user with semCreate

— user provides LSPH with these IDs, running
flag, phase, and period

— user gets synchronous handle

SYNC_HANDLE syncProcAttach(
SEM_ID sync_sem, int sync_task_id,
SEM_ID or_semn, int or_task_id,
BOOL *flag, int phase, int period)

MCS/CTOS Course 52 SSE

LSPH

e Less flexible, high-level function:

— tasks are spawned using default parameters and
semaphores are created by LSPH

— user minimally provides function to be spawned
as synchronous task, symbolic name, running
flag, phase, and period (LSPH uses default ar-
guments for task spawn and attaches a default
overrun task)

— user may provide overrun function to be used

— user may provide one argument to be passed to
the synchronous and overrun tasks

SYNC_HANDLE syncProcSpawn(
SEM_ID *pSync_sem, VOIDFUNCPTR pSync_func,

char *pSync_name, int sync_arg,
SEM_ID *pOr_sem, VOIDFUNCPTR pOr_func,
char *pOr_name, int or_arg,

BOOL *flag, int phase, int period)

Synchronous (and overrun) task called with arguments:

syncFuncName(SEM_ID syncSem, BOOL *rf,
int sysProcNum, int syncOptiArg)

MCS/CTOS Course 53 SIS

LSPH

3

wait for activ'n

flag active to P@

user ISR fct?

yes

LM interrupt

no

call user ISR

/

consider attached procs

flag idle to P@

/

MCS/CTOS Course

Using ISR Voids Warranty

54

TR

LSPH: attached procs

proc enabled?

\)@S

dec cntr

is cntr 07

MCS/CTOS Course

\Ke‘s

(r.f. == T) OR
(overrun pend AND
sys time > pend time)?

\)Le‘s

disable sync proc

unblock ovr task

disable pend AND
sys time > pend time?

\@5

ovr pend, dis pend := F

disable sync proc

ovr pend, dis pend (= F

rf. .= T

unblock sync task

cntr := sync period

|

55

SISy

LSPH

LSPH
r.f. = false wait for
wait for Ovr sem
sync sem
ovr
task body
body
possible
| loop back loop back | |
Sync proc i Sync proc j

MCS/CTOS Course 56 SIES=

LSPH

e Once a synchronous process is enabled, a detected
overrun disables it and unblocks the overrun task.

e Disabling and re-enabling can be done by the user.
e Overruns can be “forced” by the user.
e Disables and forced overruns are time-stamped.

e High level functions are provided to do task spawns
and semaphore creations for the user.

e Low level functions allow user much more flexibility
but with less hand-holding.

MCS/CTOS Course 57 Siiesyis

Booting The Synchronous Service

These loads are performed by the CTOS System
Configuration File:

e Want the clock and shut-down functions available
on all CPUs

-1 load

syncSupport.o

e Want P@ on CPU O

d load

syncMaster.o

e Want the LSPH on CPUs 1-4

1 1load
2 1load
3 load
4 Jload

MCS/CTOS Course

syncLib.o
syncLib.o
syncLib.o
syncLib.o

58 S =

Booting The Synchronous Service

These spawns are performed by the CTOS System
Configuration File:

e Want P@ Message Handler activated on CPU O

0 task pO syncPOMsgHandler 50

e Want the LSPH Message Handlers activated on

CPUs 1-4

1 task Lsph_Svrl syncLsphMsgHandler 50
2 task Lsph_Svr2 syncLsphMsgHandler 50
3 task Lsph_Svr3 syncLsphMsgHandler 50
4 task Lsph_Svr4 syncLsphMsgHandler 50

MCS/CTOS Course 59 S

Initializing The Synchronous Service

e PP and LSPHs initialize data structures in response
to MSG_CINIT. Additionally, the LSPHs notify PQ, us-
ing MSG_SYNC_CPU_CHECK_IN, that they will be respond-

ing to LM interrupts.

e PO requires that the phase and time-scale be set for
the system clock prior to turning it on. Messages
are used for this:

— MSG_SYNC_CLK_RESET
— MSG_SYNC_CLK_PHASE_SET (integer data)
— MSG_SYNC_CLK_SCALE_SET (integer data)
e Messages to PO are used for the empowering state
changes of the system clock:
— MSG_SYNC_CLK_ON
— MSG_SYNC_CLK_PROC_ON
— MSG_SYNC_CLK_PROC_ENB

MCS/CTOS Course 60 R

Use With Message Passing

e Messages are used by CTOS to initialize the syn-
chronous service.

e The synchronous service uses messages to establish
communication between P® and the LSPHSs.

e Messages can be used between event handler tasks
to establish and control synchronous processes.

e Synchronous processes can be used to periodically
generate messages.

MCS/CTOS Course 61 SR

Inter-processor Blocks (IPB)

e VVxXWorks Semaphores do not work between
processors on a VME chassis

e While there are primitives (e.g. sysBusTas)
that can be used to construct semaphores,
they have disadvantages

— They must be polled in order to block
the “taking’ process, this could either
flood the bus, or if delays are used, in-
troduce unacceptable latencies

— The polling process remains “ready” rather .
than blocked

S

M CS/CTOS Course 62 SIISy=

IPB Functions

IPBs attempt to eliminate these problems by
utilizing the VxWorks semaphore library and
bus interrupts:

IPB_FLAG ipbCreate(IPB_STATE init)
IPB_STATE init - the initial state of the IPB
IPB_CLEARED or IPB_BLOCKED

IPB_FLAG ipbTake(IPB_FLAG flag)
IPB_FLAG flag - the IPB flag to take

void ipbUnblock(IPB_FLAG flag, IPB_STATE state)

IPB_FLAG flag - the flag to Unblock

IPB_STATE state - the state to leave the flag in
after unblocking. (IPB_CLEARED
or IPB_BLOCKED

MCS/CTOS Course 63 Gy Sis

IPB Implementation

Bus Interrupt

IPB Server

i

Unblocking Proc

IPB Server

VxWorks

CPU 1

CPU 2

MCS/CTOS Course

64

SHE=

CTOS/MCS

Section llIl: MCS

Motion Control System — Introduction

e Designed to be the interface to the manip-
ulators of the CIRSSE testbed

e Effort kicked off in November, 1990 and
started in earnest in January 1991 by the
MCS design team.

e Basic functionality (with the exception of
a complete TG) in place by early July 1991

e Continued effort to enhance and complete
MCS and complete its integration with the
CIRSSE Intelligent Control System

MCS/CTOS Course 1 SIESE

Motion Control System — Features

e Designed as a control server and and as a
testbed for control research

e Individual component interface designed to
allow easy replacement for research.

e Developed on top of (and in conjunction
with) CTOS, thus providing for seamless
integration with the rest of the CIRSSE
Integlligent Control System

e Provides a convenient, well understood frame-
work for testbed software development

MCS/CTOS Course 2 =

Motion Control System — Components

A functioning Motion Control System is
configured by including several MCS
components and an application manager.

The application manager may function as the
driver for a particular experment. Or, it may

act as a ‘“client interface” to systems outside
of the MCS, such as the Coordinator.

MCS/CTOS Course 3 SR

Motion Control System — Components

MCS State Manager Monitors and maintains the state
of the Motion Control System. Provides the imple-
mentation of the interface between the application
and the other MCS components

Channel Drivers Low level interface between the hard-
ware that the MCS controls and higher levels of the
MCS Hierarchy. Maps MCS *“slots” to I/O areas on
the hardware

Controllers Provides control for those MCS slots which
require it :

Trajectory Generator Provides trajectory generation for
those slots which require it

Note that all of the components may be
allocated and distributed as the user wishes
using the CTOS Configuration mechanism.

MCS/CTOS Course 4 SIE=

Motion Control System — Components

Application or Client Interface

H H H
TG

State

Manager 1 '
Controller

lot Int.

MCS/CTOS Course

Puma Puma Platform Channel
Channe C‘nannel f
pumalib plattib | | e

Motion Control System — State Diagram

To interact with the Motion Control System,
an application makes transitions along the

MCS State Diagram:

Reserve or Unreserve

First Reserve Activate Res.

Reserved
Not Active

Last Unreserve

Restart First Enable

Shutdown

Enable or Disable

MCS/CTOS Course 6 : R

Motion Control System — State Manager
Messages

MSG_PINIT
e Initializes data structures

e Reponds to registration by Channels, Controllers,
and TGs. Channels describe slots

MSG_AINIT

e Creates IPBs for each channel, then distributes
correct IPBs to the appropriate controllers

e Sends initial timing information to channesl an
TG

e Notifies MCS Components that they may estab-
lish their default configuration

MSG_AEXEC

e Responds to other State Manager/mcsLib mes-
| sages

MCS/CTOS Course 7 Sy

——

Motion Control System — State Manager
Messages .

MSG_MCS_component_GET Returnsa MCS_SLOT_LIST
filled with the TIDs of the requested component
(TG, CONTROLLER, CHANNEL)

MSG_MCS_RATE_GET Returnsa MCS_SLOT_LIST
filled with the rates at which the slots are being ser-

voed

MSG_MCS_RESERVE Notes the reservation of the
slot

MSG_MCS_ACTIVATE
e Calibrates any reserved slots that should be. 1

e Ensures that power has been enabled for all re-
served slots

e Allows positioning of slots that are capable of it
(and are reserved)

MCS/CTOS Course 8 SIS

— e

Motion Control System — State Manager
Messages

MSG_MCS_ENABLE

e If this is the first ENABLE, notify slot's TG,
CHANNEL and CONTROLLER that MCS is
moving into the Motion state

e Notify slot’s CHANNEL that slot has been en-
abled

e Notify TG that slot has been enabled

MSG_MCS_DISABLE

e If this is the last DIABLE, notify slot's TG,
CHANNEL and CONTROLLER that MCS is
moving out of the Motion state

e Notify TG that slot has been disabled

e Notify slot’s CHANNEL that slot has been dis-
abled

MSG_MCS_DEACTIVATE

Notifies active channels to disable power

MSG_MCS_UNRESERVE Notes the unreservation of
the slot

MCS/CTOS Course 9 SIS

Motion Control System — mcsLib

In general, an application does not explicitly
send messages to the MCS State Manager.
Rather, an application can use mcsLib
functions, which encapsulate the sending of
the appropriate messages to the State
Manager.

MCS/CTOS Course 10 S i3S]

Motion Control System — mcsLib

MCS_STATUS mcsSlotReserve(TID_TYPE callTid, int slot);
MCS_STATUS mcsSlotUnreserve(TID_TYPE callTid, int slot);
MCS_STATUS mcsReservationsActivate(TID_TYPE callTid);
MCS_STATUS mcsReservationsDeactivate (TID_TYPE callTid);
MCS_STATUS mcsSlotEnable(TID_TYPE callTid, int slot);
MCS_STATUS mcsSlotDisable(TID_TYPE callTid, int slot);

TID_TYPE callTid - TID of the calling task
int slot - slot of interest

MCS/CTOS Course 11 SIS

Motion Control System — mcsLib

The mcsLib functions that return information
obtained from the State Manager use a
specially defined data type called an
MCS_SLOT_LIST:

typedef union {
TID_TYPE tid[MCS_MAX_SLOTS];

INT period [MCS_MAX_SLOTS] ;
INT phase [MCS_MAX_SLOTS];
REAL position[MCS_MAX_SLOTS];
BOOL bool [MCS_MAX_SLOTS] ;

MCS_SLOT_WORD slotWord[MCS_MAX_SLOTS];
MCS_STATUS status[MCS_MAX_SLOTS];
} MCS_SLOT_LIST;

MCS/CTOS Course 12 S5

Motion Control System — mcsLib

MCS_STATUS mcsChannelGet(TID_TYPE callTid,
MCS_SLOT_LIST *slotList);

MCS_STATUS mcsControllerGet (TID_TYPE callTid,
MCS_SLOT_LIST *slotList);

MCS_STATUS mcsTGGet (TID_TYPE callTid,
MCS_SLOTS_LIST *slotList);

TID_TYPE callTid - TID of the calling task
MCS_SLOT_LIST *slotList - Pointer to storage for a list
or NULL

MCS/CTOS Course 13 S it

MCS Synchronous Interface

channel driver

controller - PO
wait =-}-- . wait <-}-f---45ms
read Pos - r read T
ISEM_{ read Setpt : output T
: input Pos 4 hardware
write T — L -write Pos
' - release
IPB oo ;
39.6ms
POr--7
trajectory gen ; shared mem
wait<-+- —— data flow
Tead Kn0t< Sync

write Setpt

MCS/CTOS Course 14

Channel Driver Overview

Purpose of the Channel Drivers

Channel Driver Message Handler

Channel Driver Synchronous Task and
Overrun Task

Channel Driver Interfaces

Current Implementation of chanPuma
and chanPlat

Future Developments and Additions

MCS/CTOS Course 15

Purpose of the Channel Drivers

e Interface between hardware and controllers

e Handles the synchronization for discrete
control

e Handles error conditions

e Creates a device independent layer
(for controller interface)

MCS/CTOS Course 16 S iy o]

——

Channel Driver Message Handler

e Purpose/Features

— Handles asynchronous messages from
state manager

— Transfers message information to
sync task

— Handles failure of state manager

— Initializes data and hardware

MCS/CTOS Course 17 — S

Channel Driver Messages

o PINIT
— Initialize data

— Register joints

e TIME_SET (during AINIT)

— Set channel driver period and phase

o IPB_SET (during AINIT)

— Set channel driver interprocessor
block flag

MCS/CTOS Course 18 SEEE

Channel Driver Messages (cont.)

e DEFAULT_CONFIG (during AINIT)

— Check hardware

— Spawn sync task and overrun task

— Install channel driver

e CONFIG_GET/CONFIG_SET (?)

— Not Defined

MCS/CTOS Course 19

Channel Driver Messages (cont.)

e CALIBRATE (one time only)

— Turn on high power
(for joint channel drivers)

— Calibrate hardware
e PREPARE_MOTION
(transition into activate state)
— Prepare robot for motion state

— Turn on high power if not already on
(for joint channel drivers)

— Update shared memory

MCS/CTOS Course 20 SHE=

Channel Driver Messages (cont.)

e POSITION (in activate state)
— Position the robot using hardware
— Not supported by all hardware

- — Update shared memory

MCS/CTOS Course 21

Channel Driver Messages (cont.)

e MOTION (transition into motion state)
— Enable clocking of sync process
— Joints do not move until an ENABLE
is received
e ENABLE (enable selected joint for motion)
— Enable joint for motion
— Brakes off for selected joint

— One at a time

MCS/CTOS Course 22 Sty 3]

Channel Driver Messages (cont.)

e DISABLE (disable selected joint)
— Disable joint motion
— Brakes on for selected joint

— One at a time

e NO_MOTION (transition out of motion state)

— Disable clocking of synC process

MCS/CTOS Course 23 S

‘Channel Driver Messages (cont.)

e DEACTIVATE
(transition out of activate state)

— Turn off high power
(for joint channel drivers)

MCS/CTOS Course 24

Channel Driver Messages (cont.)

e ESTOP (any time after AEXEC)
— Software ESTOP
— Stop all joints

— Turn off high power

e KILL (any time after AEXEC)

— Remove channel driver

MCS/CTOS Course 25

Channel Driver Synchronous Task

e Purpose/Features
— Gathers data from hardware

— Qutputs data to hardware in a
synchronous fashion

— Handles hardware to software conver-
sions (encoder ticks to radians, etc.)

— Releases data driven tasks when data
is available (data sync mode)

— Handles controller data write delays
(ex. torque not fresh)

— Alerts state manager of " forced”
state transitions

MCS/CTOS Course 26 SIRFRE

Channel Driver Synchronous Task

e Purpose/Features (cont.)

— Stops joints before they hit hardware
limits

— Checks for ESTOP

— Stops robot when an overrun OCCuUrs
or hardware fails

MCS/CTOS Course 27 SIS

Synchronous Task Code

(1) One time initialization.
(2) Wait for PO to release.
(3) Read torque data from shared memory.
(4) Check torque data freshness.
- If not fresh then decrement count.
- If fresh then reset count.
- If count has expired set disable pending.
(5) Clip torque data (optional).
(6) Convert torque data from Nm to hardware
specific values.
(7) QOutput torque vector to robot.
(8) Read joint encoder positions.
(9) Convert joint encoder counts to radians/mm.
(10) Write position data into shared memory.

(11) Release ipb for controllers.

MCS/CTOS Course 28 S i3S

Synchronous Task Code (cont.)

(12) Check for joint limits.
- If joint at limit, set disable pending.
(13) Check for enable/disable transitions.
- Requested by message handler, or
- Requested by above code.
(14) Check for ESTOP.
(15) Notify state manager of forced transitioms.

(16) Loop back to wait (2).

MCS/CTOS Course 29 iy Sy

Overrun Task Code

(1) Issue a taskLock.

(2) Stop all robot joints.

(3) Turn off high power.

(4) Suspend synchronous task.

(5) Check if overrun was forced by sync task.
(6) Send message to state manager.

(7) Issue taskUnlock.

(8) Halt.

MCS/CTOS Course 30 SRS E

Channel Driver Interfaces

e Channel to Hardware

— Calls to pumaLib and platLib

e Channel to Controller

— Reads and writes to shared memory
directly

— Controller calls chanLib to access data

MCS/CTOS Course 31 ST

Current Implementation

e chanPuma

— One message handler for both
drivers (reentrant)

— One sync task (spawned twice)

— All joints on one driver must be at
same time period

e chanPlat

— One channel driver for both platforms

— All joints on both platforms must be
at same period

MCS/CTOS Course 32 SIS

[—

Current Implementation (cont.)

e Options
— Synchronous task priority
— Overrun task priority
— Synchronous Period and Phase
— ipb Flag to release

— Number of torque overruns before
disable

— Torque clipping

MCS/CTOS Course 33

Future Developments and Additions

e Split chanPlat driver into right and left
channel drivers

e Ability to enable more than one joint
at a time

e Force torque sensor channel driver

e Gripper channel driver

e Driver for the GCA arm

MCS/CTOS Course 34 SIEE

MCS Controllers

Overview:

e The Message Handler

e The Synchronous Task

e The Controller / Channel Interface

e The Controller / Trajectory Generator
Interface

e Putting Together the Pieces

e Future Developments

MCS/CTOS Course 35 SiiGSE

The Message Handler

The Controller Message Handler Must
Respond to the Following Messages:

e MSG_PINIT

e MSG_MCS_IPB_SET

e MSG_MCS_TIME_SET

e MSG_MCS_DEFAULT_CONFIG

e MSG_MCS_MOTION

e MSG_MCS_NO_MOTION

MCS/CTOS Course 36 SIS

The Message Handler (cont.)

e MSG_PINIT
— Register with the State Manager

— Example:

/* Define List of Joints to Control * [/
int jointList = {1,2,3,10,11,12};

int numJoints = 6;

/* Register with State Manager */
mcsControllerRegister(myTid,
jointList,

numJoints);

MCS/CTOS Course 37 ity =

The Message Handler (cont.)

e MSG_MCS_IPB_SET

— Receive an IPB flag via message data

— Example:

/* Get IPB Flag */
myIpbFlag = (IPB_FLAG) (msg->data);

MCS/CTOS Course 38 =

The Message Handler (cont.)

e MSG_MCS_TIME_SET

— Receive period via message data

— Example:

/* Cast Message Data to Structure */

myTimeInfo =
(MCS_SLOT_TIME_TYPE *)(msg->data);

/* Get Period */

j = jointList[O];

period =
(myTimeInfo->slotPeriodInfo).period[jl;

/* Convert Period to Seconds * /
periodInSecs = (period * MCS_CUP) / 1000;

MCS/CTOS Course 39

The Message Handler (cont.)

e MSG_MCS_DEFAULT_CONFIG

— Read files
— Initialize data structures

— Spawn the synchronous task

e MSG_MCS_MOTION

— Get the current robot position

— Example:

/* Initialize interpLib */

interpLibInit(numJoints,
jointList,
initPos);

MCS/CTOS Course 40

——

The Message Handler (cont.)

Future Messages Will Include:

e MSG_MCS_CONFIG_GET

e MSG_MCS_CONFIG_SET

e MSG_MCS_ENABLE / DISABLE

e MSG_MCS_KILL

. MCS/CTOS Course 41

SR

The Synchronous Task

Important Issues:

e Blocking on an IPB flag

e Data Overruns

e [he Control Structure

MCS/CTOS Course 42

The Synchronous Task (cont.)

Controller Channel PO
Get Torque
Put Torque A
Get Pos.
Put Pos.
IPB Unblock
Read Position
Write Torque Check Limits 5.4ms
Get Setpoint
Calc. Torque
)
Get Torque
Put Torque
|
Block Get Pos.
Put Pos.
IPB Unblock
Check Limits
MCS/CTOS Course 43 SHESE

The Synchronous Task — Data Overrun

Controller

Read Position

Calc. Torque

Y

Write Torque

Block

Channel PO

Get Torque
Put Torque

Get Pos.
Put Pos.
IPB Unblock

Check Limits

5.4ms

Get Torque
Put Torque

Get Pos.
Put Pos.
IPB Unblock

Check Limits

MCS/CTOS Course

44 SiiGSi

The Synchronous Task (cont.)

e Blocking on an IPB flag

— Example:

while (TRUE) {

/* Wait for Channel */
ipbTake (myIpbFlag);

} /* end of while */

MCS/CTOS Course 45

SESE

The Synchronous Task (cont.)

e Data Overruns

— A data overrun occurs when the posi- 1
tions or torques are not FRESH

— If a torque overrun occurs, the channel
uses the old torque value

— The channel will allow N data overruns
before the joint is disabled 1

MCS/CTOS Course 46 Sl 3]

The Synchronous Task (cont.)

e T he Control Structure

— The control loop must:

«+ block on an IPB flag

« read positions and write torques
*x get setpoints

* compute torque

— The order of these operations is a trade-
off between computational speed and

lag

MCS/CTOS Course 47 SRR

The Controller / Channel Interface

Controllers read positions and write torques
using chanlLib.

e Reading positions

chanScalarRead(int joint,
float *pos,

short mode);

chanVectorRead(int numJoints,
int jointList([],
float posVector[],

short mode);

e Position units are rad (revolute) and mm
(prismatic)

MCS/CTOS Course 48 SHE=

— e

The Controller / Channel Interface (cont.)

e Modes for Reading Positions
— CHAN_CONTROLLER

— CHAN_OBSERVER

e Writing Torques
chanScalarWrite(int joint,

float trq);

chanVectorWrite(int numJoints,
int jointListl[],
float trqVector([]);

e Torque units are Nm

MCS/CTOS Course 49 SIS

The Controller / Channel Interface (cont.)

e Checking for Enable / Disable Transitions

chanJointState(int joint);

e chanLib Return Codes
— CHAN_OKAY
— CHAN_ERROR
— CHAN_DISABLED
— CHAN_NOTFRESH
— CHAN_OVERRUN

— CHAN_ENABLED

MCS/CTOS Course 50 SIEE

The Controller / Trajectory Generator
‘ Interface

Controllers get setpoints using interpLib.

interpScalarRead(int joint,
float *pos,
float *vel,
float *acc,

short dataSelect);

interpVectorRead(int numJoints,
int jointListl[],
float posVectorl[],
float velVector(],
float accVectorl],
short dataSelect);

MCS/CTOS Course 51 SOUSys

Putting Together the Pieces

Or, How To Write An MCS Controller

Step 1: Write a Message Handler

Step 2: Write a Sync Task That:

a) Blocks on an IPB Flag

b) Writes Torques

c) Reads Positions

d) Gets Setpoints

e) Computes Torques (Control Algorithm)

MCS/CTOS Course 52 SiisS]

Putting Together the Pieces (cont.)

Example: Synchronous Task

static void

ctrlPid(TID_TYPE myTid)
{
float trq[NUM_JOINTS]; /* torques */
float pos_k[NUM_JOINTS]; /* current position */
float pos_d[NUM_JOINTS]; /* desired position */
float vel d[NUM_JOINTS]; /* desired velocity */

while (TRUE)
{

a) /* wait for channel to unblock */
ipbTake (myIpbFlag);

b) /* write torques */
chanVectorWrite (NUM_JOINTS,
jointList,
trq);

c) /* read positions */
chanVectorRead (NUM_JOINTS,
jointList,
pos_k,
CHAN_CONTROLLER) ;

MCS/CTOS Course 53 SRR

Putting Together the Pieces (cont.)

d) /* get position and velocity setpoints */
interpVectorRead (NUM_JOINTS,
jointList,
pos_d,
vel_d,
NULL,
INTERP_POS_VEL) ;

e) /**%%* insert control algorithm here **x%x/

} /* end of while x/
} /* end of ctrlPid() x/

MCS/CTOS Course 54 SR

Future Developments

e Trans-Channel Controllers
— Requires ANDing IPB flags

— Servo rate limited by slowest channel

e Swapping Controllers

e Better Algorithms
Currently available:

— Gravity compensation

— PID with integral windup compensation

MCS/CTOS Course 55 G il G

MCS Client Interface

e MCS Client Interface will provide access to MCS
functions for

— higher levels of “intelligent machine”
— experiments coordinating vision & motion

e Client Interface will be implemented as library of C
functions

— these C functions will exchange messages with
MCS

— library will be available on VME and Suns

e Library will include
— motion commands
— gripper commands
— access to internal sensors
— transform operations

— trajectory generation functions

e First application will be a teach pendant

MCS/CTOS Course 56 P

CTOS/MCS

Case Study: Master/Slave Control

vx0 | CTOS Support Tasks

vxi chanRPmabDrv

vx2 chanLPmabDrv

vx3 ctriRGrav

ctriPid5

vx4 |} tgen
Application Manager

MCS/CTOS Course 1

Case Study: Master/Slave Control

e Configuration File

e Application Code

e ‘“Trajectory Generator” Code

e Controller Code
— QGravity Compensation

— PID

MCS/CTOS Course 2

s
,

CTOS/MCS Course Exercises

1. VxWorks “Print String” Function

e Lessons

— using Imake to compile

— working with bare VxWorks

e Procedure

(a) write function that prints “From task xx: ’string’ ”
(b) function prototype: void xyzPrtStr (TID_.TYPE id, const char *s)
(c) copy header file /home/lefebvre/vxworks/bootstrap/course/ex.h and change

(d)

function prototypes to match your function names
create Imakefile — be sure to include the following directories

-I/home/lefebvre/vxworks/bootstrap
-I/home/watson/cirsse/mcs/sync

run cmkmf, then compile your function
run under VxWorks:
i. cd “/home/yourdir/”
ii. 1d < xyzPrtStr.o
iii. xyzPrtStr (123, “Hello World™)

2. Simple Event Handler Task

e Lessons

— format of event handler function
— CTOS bootstrap phases
~ building a config file

e Procedure

(a)
(b)

(
(
(
(

you will write an event handler function for a task with symbolic name
"Team_n’ - where '’ is vour team number, e.g. Team_2

the task is to report when it receives the bootstrap phase messages MSG_PINIT,
MSG_AINIT, & MSG_AEXEC, e.g. “From task xx: Team 1 received PINIT”

build a User Config File for entire class
use ctconfig to point to your config file
use vxboot to change to CTOS VxWorks kernel

run the application

3. Send Messages to Other Tasks

e Lessons

- finding TIDs of other tasks

saving data between calls to EH function

building & sending messages

e Procedure

(a)
(b)
(c)

(d)
()

add to event handler function of exercise 2 to send messages to the other
teams

during AINIT: find TIDs of other teams’ event handler functions via their
symbolic names (i.e. use msgTidQuery), print out the names & TIDs

during AEXEC: send different MSG_STRING message to each team
be prepared to print out received messages

run it

4. Set up Synchronous Task

e Lessons

creating a synchronous process

connecting to synchronous services

¢ Procedure

(a)

(b)

()

write synchronous task that posts a MSG.STRING message to your event

handler function

i. use prototype: void xyzSyncTask(), and put in separate file

i. create global variables for: EH task’s TID, sync process semaphore &
running flag

—

iii. sync task loops forever
iv. remember to set running flag = FALSE and to take semaphore at begining
of loop
add to event handler function of excrcise 3 to set up the synchronous process
i. use syncProcSpawn in PINIT to create sync process
ii. use 2000 ticks for clock rate (1.3 seconds)

iii. use syncProcEnb in AEXEC to start it

) update config file to load sync task

add following lines to config file to create Application Executive task that
starts clock

0 load /home/lefebvre/vxworks/bootstrap/course/app._exec.o

0 task App_Exec app_exec 50

compile everything & run it

SV

5. Communicate with Synchronous Task

e Lessons

— communication between synchronous & non-synchronous processes

e Procedure

(a) Application Executive will periodically send MSG_START_SYNCTASK &
MSG_STOP_SYNCTASK messages

(b) your event handler task must communicate with your synchronous process to
start/stop posting messages

1. use syncProcDis to stop it

1. use syncProcEnb to restart it
1. print message to report start/stop

(c) compile everything & run it

ex.h Wed Jul 17 09:02:36 1991 1

/*
Header file for Exercises - ex.h
*/
[Hmmmmmmmmmm e e e m e oo include files =—-—=======——----———-=-==--—

#include "stdioLib.h"
#include "string.h"
#include "logLib.h"
#include "msgLib.h"
#include "syncLib.h"

f e function prototypes —-—-——-==--=—---—--=--
void printString (TID_TYPE t, const char *s) ;
int userfen (TID_TYPE myTid, MSG_TYPE *msg) ;

void syncTask O

/1

strprt.c Wed Jul 17 07:56:04 1991 1
/*

TEAM 1 Exercise 1 - strprt.c
*/

#include "ex.h"™

/**

printString
‘k***x*******************************/

void printString (TID_TYPE t, const char *s)

{
printf ("From task %x: ’‘%s’\n", t, s)

}

ex2.c wWed Jul 17 08:00:05 1991 1
/*

TEAM 1 Event Handler Function - ex2.c
*/

#include "ex.h"

/***w************‘k*******k***********

userfecn - Event Handler Function for Exercise 2
‘k*‘k*********t*********************k*********k****‘k**********************/
int userfcn (TID_TYPE myTid, MSG_TYPE *msg)

{
switch (msg->command)

{
case MSG_PINIT:
printString (myTid, "Team 1 received PINIT")

break ;

case MSG_AINIT:
printString -(myTid, "Team 1 received AINIT")

break ;

case MSG_AEXEC:
printString (myTid, "Team 1 received AEXEC") ;
break ;
}
return (msgDefaultProc (myTid, msg))
}

ex3.c Wwed Jul 17 07:55:34 1991 1
/*

TEAM 1 Event Handler Function - ex3.c
>/

#include "ex.h"

/*******************************x**

userfcn - Event Handler Function for Exercise 3
**/
int userfcn (TID_TYPE myTid, MSG_TYPE *msg)

{
static TID_TYPE tl, t2, t3, t4 ;

static char msgl{] = ("Hello team 1 from myself"} ;
static char msg2 [20]
char *msg3 ;

switch (msg->command)
{
case MSG_PINIT:
/* report receiving bootstrap message */
printString (myTid, "Team 1 received PINIT")

/* break to get default processing */
break

case MSG_AINIT:
/* report receiving bootstrap message */
printString (myTid, "Team 1 received AINIT") ;

/* find TIDs of other tasks */

printf ("Team 1’s TID $x\n", tl = msgTidQuery (myTid, "Team_1"}))
printf (“Team 2's TID $x\n", t2 = msgTidQuery (myTid, "Team_2"))
printf (“Team 3's TID $x\n", t3 msgTidQuery (myTid, "Team_3")) ;
printf ("Team 4's TID = %x\n", td = msgTidQuery (myTid, "Team_4")) ;

/* break to get default processing */
break

case MSG_AEXEC:
/* report receiving bootstrap message */
printString (myTid, “"Team 1 received AEXEC") ;

/* send msg to other teams */

msgBuildSend (tl, myTid, MSG_STRING,
msgl, strlen(msgl),
MF_STANDARD) ;

strcpy (msg2, "Hello team 2 from team 1%)

msgBuildSend (t2, myTid, MSG_STRING,
msg2, strlen(msg2),
MF_STANDARD)

msg3 = (char *) malloc (25) ;

strcpy (msg3, "Hello team 3 from team 1)

msgBuildSend (t3, myTid, MSG_STRING,
msg3, strlen(msg3),
MF_STANDARD) ;

msgBuildSend (t4, myTid, MSG_STRING,

ex3.c Wed Jul 17 07:55:34 1991 2

"Hello team 4 from team 1", 25,
ME‘__S TANDARD) ;

/* break to get default processing */
break ;

case MSG_STRING:
/* report received string */
printf ("Task %x received string from Task %x: ’‘%s’\n",
myTid, msg->source, {(char *)msg->data) ;

/* Dbreak to get default processing */
break ;

case MSG_INTEGER:
/* report received string */
printf ("Task %x received integer from Task %x: %i\n",
myTid, msg->source, (int)msg->data) ;

/* break to get default processing */
break ;

}
return (msgDefaultProc (myTid, msg)) ;

}

ex4.c Wed Jul 17 10:55:15 1991 1
/*

TEAM 1 Event Handler Function - ex4.cC
*/

#include "ex.h"

extern TID_TYPE parent ; /* global TID of parent EH function */
extern SEM_ID semSync /* global vars needed by sync process *x/
extern BOOL runSync ;

/***********************************t************************************‘k*****

userfcn - Event Handler Function for Exercise 4
‘k***********************/

int userfcn (TID_TYPE myTid, MSG_TYPE *msg)
{

static TID_TYPE t1, t2, t3, t4 ;
static SYNC_HANDLE hSync ;
static char msgl{] = {"Hello team 1 from myself"}
static char msg2 [40] ;
char *msg3 ;

switch (msg->command)
{
case MSG_PINIT:
/* report receiving bootstrap message * /
printString (myTid, "Team 1 received PINIT")

/* set up synchronous task */
parent = myTid ;
hSync = syncProcSpawn (&semSync, syncTask, "Sync_Task", 0,
NULL, NULL, "", SYNC_OVR_MILD,
&runSync, 1, 2000)
if (hSync == ERROR)
{
printf ("ERROR: Could not create Sync Task\n")
break ;
}

/* break to get default processing */
break ;

case MSG_AINIT:
/* report receiving bootstrap message */
printString (myTid, "Team 1 received AINIT")

/* find TIDs of other tasks */

printf ("Team 1‘s TID = %x\n", tl = msgTidQuery (myTid, "Team_1

printf ("Team 2’'s TID $x\n", t2 msgTidQuery (myTid, "Team 2"
printf ("Team 3's TID $x\n", t3 msgTidQuery (myTid, "Team 3

printf ("Team 4's TID $x\n", t4 = msgTidQuery (myTid, "Team_ 4

[

/* break to get default processing */
break ;

case MSG_AEXEC:
/* report receiving bootstrap message */
printString (myTid, "Team 1 received AEXEC")

.c Wed Jul 17 10:55:15 1991 2

/* send msg to other teams */

msgBuildSend (tl, myTid, MSG_STRING,
msgl, strlen(msgl),
MF_STANDARD) ;

strcpy {(msg2, "Hello team 2 from team 1") ;
msgBuildSend (t2, myTid, MSG_STRING,
msg2, strlen(msg2),
MF_STANDARD) ;

msg3 = (char *) malloc (25) ;
strcpy (msg3, "Hello team 3 from team 1") ;
msgBuildSend (t3, myTid, MSG_STRING,
msg3, strlen(msg3),
MF_STANDARD) ;

msgBuildSend (t4, myTid, MSG_STRING,
"Hello team 4 from team 1%, 25,
MF_STANDARD) ;

/* enable Sync Task */
if (syncProcEnb (hSync) == ERROR)

printf ("ERROR: could not enable Sync Task, hSync=%x\n", hSync)
else

printf ("Sync Task was Enabled\n") ;

/* break to get default processing */
break ;

case MSG_STRING:
/* report received string */
printf ("Task %x received string from Task %x: ’%s’\n",
myTid, msg->source, (char *)msg->data) ;

/* break to get default processing */
break

case MSG_INTEGER:
/* report received string */
printf ("Task %x received integer from Task %x: %i\n",
myTid, msg->source, (int)msg->data) ;

/* break to get default processing */
break ;

}
return (msgDefaultProc (myTid, msg)) ;

}

sync.c Wed Jul 17 11:20:53 1991 1
/%

TEAM 1 Synchronous Task - sync.cC
*/

#include "ex.h"

/* global TID of parent EH function */

TID_TYPE parent ;
global vars needed by sSync process */

SEM_1ID semSync ; /=
BOOL runSync = FALSE ;

/*'k***t********************************

syncTask

**/

void syncTask ()
{
MSG_TYPE msg ;
char s[80]
int i=1;

while (TRUE)

{

/* block on semaphore */

runSync = FALSE ;

if (semTake (semSync, WAIT_FOREVER) == ERROR)
logMsg ("*** ERROR: Invalid semaphore *k**x\n'")

/* create string */
sprintf (s, “"Hi daddy, msg #%i", i++)

/* create message */
msgBuild (&msg, parent, parent, MSG_STRING, s, strlen(s), MF_STANDARD);

/* post message */
msgPost (&msg)
}

C¢-3

ex5.¢c Wed Jul 17 10:59:27 1991 1
/*

TEAM 1 Event Handler Function - exS5.c
*/

#include "ex.h"

extern TID_TYPE parent ; /* global TID of parent EH function * /
extern SEM_ID semSync ; /* global vars needed by sync process */
extern BOOL runSync ;

/‘k**********************************t**

userfcn - Event Handler Function for Exercise 5
*‘k**********i*************************************t*********************k*****/

int userfcn (TID_TYPE myTid, MSG_TYPE *msg)
{

static TID_TYPE tl, t2, t3, t4 ;
static SYNC_HANDLE hSync ;
static char msgl[] = ("Hello team 1 from myself"} ;
static char msg2 [40] ;
char *msg3 ;

switch (msg->command)
{
case MSG_PINIT:
/* report receiving bootstrap message */
printString (myTid, "Team 1 received PINIT")

/* set up synchronous task */
parent = myTid ;
hSync = syncProcSpawn (&semSync, syncTask, "Sync_Task", 0,
NULL, NULL, "", SYNC_OVR_MILD,
&runSync, 1, 2000) :
if (hSync == ERROR)
{
printf ("ERROR: Could not create Sync Task\n") :
break ;
}

/* break to get default processing */
break ;

case MSG_AINIT:
/* report receiving bootstrap message */
printString (myTid, “Team 1 received AINIT")

/* find TIDs of other tasks */

printf ("Team 1’s TID = %x\n", tl = msgTidQuery (myTid, "Team_1"))
printf ("Team 2's TID = %x\n", t2 = msgTidQuery(myTid, "Team 2"))
printf ("Team 3's TID = %$x\n", t3 msgTidQuery (myTid, "Team 3"))
printf ("Team 4’'s TID $x\n", t4 = msgTidQuery(myTid, "Team _4"))

~.

/* break to get default processing */
break ;

case MSG_AEXEC:
/* report receiving bootstrap message */
printString (myTid, "Team 1 received AEXEC") ;

Wed Jul 17 10:59:27 1991 2

/* send msg to other teams */

msgBuildSend (t£l, myTid, MSG_STRING,
msgl, strlen(msgl),
MF_STANDARD) ;

strcpy (msg2, "Hello team 2 from team 1"
msgBuildSend (t2, myTid, MSG_STRING,
msg2, strlen(msg2),
MF_STANDARD) ;

msg3 = (char *) malloc (25) ;
strcpy (msg3, "Hello team 3 from team 1") ;
msgBuildSend (t3, myTid, MSG_STRING,
msg3, strlen(msg3),
MF_STANDARD) ;

msgBuildSend (t4, myTid, MSG_STRING,
"Hello team 4 from team 1", 25,
MF_STANDARD) ;

/* enable Sync Task */
if (syncProcEnb (hSync) == ERROR)

printf ("ERROR: could not enable Sync Task, hSync=%x\n", hSync) ;
else

printf ("Sync Task was Enabled\n") ;

/* break to get default processing */
break ;

case MSG_STRING:

/* report received string */
printf (“Task %x received string from Task %x: '%s’\n",
myTid, msg->source, (char *)ymsg->data) ;

/* break to get default processing */
break :

case MSG_INTEGER:

/* report received string */
printf ("Task %x received integer from Task %x: %i\n"“,
myTid, msg->source, (int)msg->data) ;

/* break to get default processing */
break ;

case MSG_START_SYNCTASK:

/* start Sync Task */
if (syncProcEnb (hSync) == ERROR)

printf ("ERROR: could not enable Sync Task\n")
else

printf ("Sync Task was Enabled\n")

/* break to get default processing */
break ;

case MSG_STOP_SYNCTASK:

/* stop Sync Task */
if (syncProcDis (hSync) == ERROR)

printf ("ERROR: could not disable Sync Task\n") ;
else

.c Wed Jul 17 10:59:27 1991

3

printf ("Sync Task was Disabled\n")

/* Dbreak to get default processing
break ;

}
return (msgDefaultProc (myTid, msg))

}

*/

Imakefile Wed Jul 17 10:59:47 1991 1

/* Imakefile for CTOS/MCS Course Exercises */

CPPFLAGS += -I/home/lefebvre/vxworks/bootstrap -I/home/watson/cirsse/mcs/sync
AllTarget (strprt.o ex5.0 sync.o app_exec.o)

VxWorksBinTarget (strprt.o, ex.h,)

vxWorksBinTarget (ex5.0 , ex.h,)

VxWorksBinTarget (sync.o , ex.h, }

VxWorksBinTarget (app_exec.o, ,)

course_ config Wed Jul 17 11:14:10 1991

User Configuration File for CTOS/MCS Course

load & start Application Executive
0

load

/home/lefebvre/vxworks/bootstrap/course/app_exec.o

0 task App_Exec app_exec 50

-1 load /home/lefebvre/vzworks/bootstrap/course/strprt.o
-1 load /home/lefebvre/vxworks/bootstrap/course/sync.o

1 load /home/lefebvre/vxworks/bootstrap/course/ex5.o

2 load /home/lefebvre/vxworks/bootstrap/course/ex5.0

3 load /home/lefebvre/vxworks/bootstrap/course/ex5.0

4 load /home/lefebvre/vxworks/bootstrap/course/ex5.0

load & start each team’s event handler task

#1 load /home/lefebvre/vxworks/bootstrap/course/team 1.0
1 task Team 1 userfcn 150

#2 load /home/lefebvre/vxworks/bootstrap/course/team 2.0
2 task Team 2 userfcn 150

#3 load /home/lefebvre/vxworks/bootstrap/course/team 3.0
3 task Team 3 userfcn 150

#4 load /home/lefebvre/vxworks/bootstrap/course/team 4.0
4 task Team_ 4 userfcn 150<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>